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Abstract

The aim of the study is to identify the candidate biomarkers of heat stress (HS) in the urine

of lactating dairy goats through the application of proton Nuclear Magnetic Resonance (1H

NMR)-based metabolomic analysis. Dairy does (n = 16) in mid-lactation were submitted to

thermal neutral (TN; indoors; 15 to 20˚C; 40 to 45% humidity) or HS (climatic chamber; 37˚C

day, 30˚C night; 40% humidity) conditions according to a crossover design (2 periods of 21

days). Thermophysiological traits and lactational performances were recorded and milk

composition analyzed during each period. Urine samples were collected at day 15 of each

period for 1H NMR spectroscopy analysis. Principal component analysis (PCA) and partial

least square—discriminant analysis (PLS-DA) assessment with cross validation were

used to identify the goat urinary metabolome from the Human Metabolome Data Base. HS

increased rectal temperature (1.2˚C), respiratory rate (3.5-fold) and water intake (74%), but

decreased feed intake (35%) and body weight (5%) of the lactating does. No differences

were detected in milk yield, but HS decreased the milk contents of fat (9%), protein (16%)

and lactose (5%). Metabolomics allowed separating TN and HS urinary clusters by PLS-DA.

Most discriminating metabolites were hippurate and other phenylalanine (Phe) derivative

compounds, which increased in HS vs. TN does. The greater excretion of these gut-derived

toxic compounds indicated that HS induced a harmful gastrointestinal microbiota over-

growth, which should have sequestered aromatic amino acids for their metabolism and

decreased the synthesis of neurotransmitters and thyroid hormones, with a negative impact

on milk yield and composition. In conclusion, HS markedly changed the thermophysiological

traits and lactational performances of dairy goats, which were translated into their urinary

metabolomic profile through the presence of gut-derived toxic compounds. Hippurate and

other Phe-derivative compounds are suggested as urinary biomarkers to detect heat-

stressed dairy animals in practice.
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Introduction

Exposure to high ambient temperature induces several physiological responses in order to

maintain body homeostasis. Animals suffer from heat stress (HS) when physiological mecha-

nisms fail to counterbalance an excessive heat load [1]. Exposure of dairy animals to HS results

in a decline in their productive [2] and reproductive [3] performances due to a strong meta-

bolic disruption. Dairy animals under HS typically show decreased feed intake, increased

water consumption and altered thermophysiological traits, such as respiratory rate and rectal

temperature, when compared to thermoneutral (TN) ones. Usually, HS reduces milk yield and

impairs milk composition in dairy goats [4]. Although these negative effects on milk produc-

tion are traditionally attributed to a decline in feed intake, pair-fed TN experiments have

shown that intake only accounts for 35 to 50% of milk yield reduction in dairy cows [5, 6].

Therefore, there is a specific effect of HS that disrupts body metabolism and milk secretion

which remains unknown.

Bio-fluid assessment by Nuclear Magnetic Resonance (NMR) spectroscopy can shed some

light on the physiological mechanisms that occur in animals when exposed to HS. Proton (1H)

NMR, together with multivariate statistical analysis, has been successfully used as a metabolite

profiling method to study the metabolic changes in blood [7], milk [8] and liver [9] of HS

dairy cows, as well as in plasma of HS growing pigs [10] and rats [11]. This robust and reliable

technique provides vast information on metabolome dynamics and metabolic pathways [12].

The 1H NMR spectra are derived from thousands of metabolite signals that usually overlap,

adding complexity to data processing. Computer-based data reduction and multivariate statis-

tical pattern recognition methods, such as principal component analysis (PCA) and partial

least square—discriminant analysis (PLS-DA), have been shown to be beneficial techniques to

get the most from the information obtained in the 1H NMR spectra for classification purposes

[13, 14].

To our knowledge, no studies have been carried out to evaluate urine metabolomics of

dairy goats. The aim of this study is to identify the candidate biomarkers of HS through the

application of 1H NMR-based metabolomic urinalysis of dairy goats.

Material and methods

Animals and treatments

Animal care conditions and management practices of the study were approved by the Ethical

Committee of Animal and Human Experimentation (CEEAH Approval No. 09/771) of the

Universitat Autonoma of Barcelona (UAB) and agreed the codes of recommendations for live-

stock wellbeing of the Ministry of Agriculture, Food and Environment of Spain.

Sixteen multiparous Murciano-Granadina dairy does (43.5 ± 1.6 kg body weight), lactating

and open, from the herd of the SGCE (Servei de Granges i Camps Experimentals) of the UAB

in Bellaterra (Barcelona, Spain), were blocked into 2 balanced groups at mid-lactation (81 ± 3

days-in-milk; 2.00 ± 0.04 L/day). Does were adapted to metabolic cages for 2 weeks before the

start of the experiment and the groups randomly allocated to 2 ambient-conditions treatments

according to a 2 × 2 (treatment × period) crossover design. There were two 21-day experimen-

tal periods (14 days for adaptation, 5 days for measurements, and 2 days for washout) during

which both treatments were sequentially applied to each doe. As a result, a total of 16 observa-

tions per variable were obtained for each treatment. Treatments were TN (indoor shelter; 15 to

20˚C and 45 ± 5% relative humidity) and HS (climatic chamber 4 m × 6 m × 2.3 m with tem-

perature-humidity control system; Carel Controls Ibérica, Barcelona, Spain; 37 ± 0.5˚C during

the day, and 30 ± 0.5˚C during the night; 40 ± 5% humidity and 90 m3/h continuous air
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turnover). Day-night length was set to 12–12 hours. Temperature-humidity index (THI), cal-

culated according to NRC in 1971 [15], resulted in THITN = 59 to 65 and THIHS = 75 to 83.

Experimental conditions were similar to those detailed by Hamzaoui et al. [16].

Does were milked once a day (0800) with a portable machine (Westfalia-Separator Ibérica;

Granollers, Spain) set at 42 kPa, 90 pulses/min and 66% pulsation ratio and provided with vol-

umetric recording jars (3 L ± 5%). The milking routine included cluster attachment, machine

milking, machine stripping before cluster removal, and teat dipping in an iodine solution

(P3-ioshield, Ecolab Hispano-Portuguesa; Barcelona, Spain). Feed was offered ad libitum at

0930 hours (130% feed intake of the previous day) and consisted of a total mixed ration (dry

matter, 89.9%; net energy for lactation, 1.40 Mcal/kg; crude protein, 17.5%; organic matter,

87.3%; neutral detergent fiber, 34.4%; acid detergent fiber, 21.8%; on dry-matter basis). Ration

ingredients were (as fed): alfalfa hay, 64.2%; ground barley, 9.6%; beet pulp, 9.6%; ground

corn, 8%; soybean meal, 3.3%; sunflower meal, 3.2%; molasses, 1%; salt, 0.6%; sodium bicar-

bonate, 0.3%; mineral and vitamin complex, 0.2% (Vitafac premix, DSM Nutritional Products;

Madrid, Spain). Water was permanently available and offered at room temperature in water

bowls connected to individual tanks of 20 L. A sawdust drip tray under each water bowl was

used to collect spilled water.

Sampling and measurements

Thermophysiological traits and lactational performances of the goats. Does were

weighed at the start and the end of each period using an electronic scale (True-Test SR2000;

Pakuranga, New Zealand; accuracy, 0.2 kg). Rectal temperature (digital clinical thermometer,

ICO Technology; Barcelona, Spain; accuracy, 0.1˚C) and respiratory rate (flank movements

during 60 s) were recorded daily at 0800, 1200, and 1700 hours throughout the experiment.

Milk yield (volume) was recorded daily throughout the experiment, and milk samples were

collected weekly for composition (NIRSystems 5000, Foss; Hillerød, Denmark). Feed and

water intakes were calculated by weight from the daily refusals and feed samples were collected

daily and composited by period for analyses. Feed composition was determined according to

analytical standard methods [17].

Urine sampling and preparation. Urine samples from each doe were collected at micturi-

tion on the morning of day 15 of each period (n = 32) and stored at −20˚C until 1H NMR

analysis.

Preparation of samples for 1H NMR spectroscopy was done according to Beckonert et al.

[12]. Briefly, a phosphate buffer solution (pH 7.4) was prepared with sodium phosphate diba-

sic (Na2HPO4; 99.95% trace metals basis, anhydrous, Sigma-Aldrich Merck; Darmstadt Ger-

many), sodium phosphate monobasic (NaH2PO4; 99.95% trace metals basis, anhydrous,

Sigma-Aldrich Merck) and sodium azide (NaN3; Sigma-Aldrich Merck). Deuterium oxide

(D2O; 99.9 atom % D, Sigma-Aldrich Merck), containing 0.75% 3-(trimethylsilyl) propionic-

2,2,3,3-d4 acid (TSP) sodium salt as the NMR reference compound, was added before the

flask was filled up to 25 mL with milli-Q water (EMD Millipore; Darmstadt, Germany). The

flask was shaken thoroughly and left in a Clifton sonicator (Nickel Electro; Weston-super-

Mare, United Kingdom) at 40˚C until the salts were dissolved. The prepared phosphate

buffer solution was stored at 4˚C. Urine samples were thawed in a water bath, thoroughly

shaken and spun for 5 min at 12,000 × g in a swing-bucket rotor (Hettich; Tuttlingen, Ger-

many) at 4˚C. Then, 400 μL of the urine sample were transferred into Eppendorf tubes and

mixed thoroughly with 200 μL of cold phosphate buffer solution. All the tubes were then cen-

trifuged for 5 min at 12,000 × g at 4˚C and 550 μL of the final mixture transferred into 5-mm

NMR tubes (VWR International Eurolab; Barcelona, Spain). The prepared NMR tubes were
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immediately put on ice and sent to the NMR Service of the UAB for 1H High Resolution

NMR Spectroscopy.

NMR spectroscopy. 1H NMR spectra were acquired on a Bruker Avance-III spectrometer

(Bruker BioSpin; Rheinstetten, Germany) operating at a 1H NMR frequency of 600 MHz and a

temperature of 298˚K, controlled by a Burner Control Unit-extreme regulator. A 5-mm Triple

Resonance Broadband Inverse probe with z-gradients and inverse detection was used and con-

trolled by TopSpin2.1 software (Bruker, Germany). One-dimensional 1H NMR spectra were

obtained using a one-dimensional Nuclear Overhauser Enhancement Spectroscopy (NOESY)

pulse sequence. The solvent signal was suppressed by pre-saturation during relaxation and

mixing time. A total of 32 scans and 2 dummy scans were performed to produce 32,768 data

points for each spectrum using a relaxation delay of 2.0 s with a pulse power level of 54 dB and

an acquisition time of 2.6 s. Spectral width (δ) used for all data collected was 12.0 ppm, and 0.3

Hz exponential line-broadening was applied for the Fourier Transform of the raw data. 1H

NMR spectra were phased, baseline corrected, and corrected for chemical shift registration rel-

ative to the TSP reference compound previously indicated (δ = 0.0 ppm) in TopSpin 2.1.(data

in S1 Dataset).

Statistical analyses

Thermophysiological and performance analysis. Data were analyzed by the PROC

MIXED for repeated measurements of SAS v. 9.1.3 (SAS Inst. Inc.; Cary, North Carolina,

USA). The statistical mixed model contained the fixed effects of environmental treatment (TN

vs. HS), the period (1 and 2) and measuring day (1 to 19), the random effects of the animal (1

to 16), the interactions (treatment × day and treatment × period), and the residual error. Dif-

ferences between least squares means were determined with the PDIFF option of SAS. Signifi-

cance was declared as P<0.05.

NMR data pre-processing and analysis. Pre-treatment of raw spectral data is critical for

generating reliable and interpretable models using multivariate analysis techniques. Neverthe-

less, metabolic fingerprinting datasets acquired from 1H NMR spectrometers suffer from

imprecisions in chemical shifts due to temperature, pH, ionic strength and other factors [18].

Therefore, models generated using multivariate analysis may fail to identify separations

between classes, and their loadings can be difficult to interpret due to an over-abundance of

variables. To mitigate these complications, each spectrum was uniformly divided into ‘bins’ of

20 signals, and the signal intensities within each bin were integrated to produce a smaller set of

variables (i.e., from 0.0003 to 0.007 ppm) using R software v. 3.2.3 [19]. After binning, align-

ment and normalization of spectra were performed to ensure that all observations were

directly comparable. In this sense, urine spectra were normalized to creatinine methyl reso-

nance intensity at δ = 3.05 ppm and then log2 transformed. Regarding variable selection, raw
1H NMR spectral data were edited by excluding both the regions outside the chemical shift

range of δ = 9.0–0.5 ppm and the residual peak of the imperfect water suppression (δ = 5.5–

4.6 ppm). Following the recommendations of Pechlivanis et al. [20], the spectral regions of his-

tidine, 1-metylhistidine, and 3-methylhistidine (δ = 8.17–7.87, δ = 7.15–7.01, and δ = 3.77–

3.71 ppm, respectively) were also removed because of the sensitivity to small pH differences

among urine samples.

Once 1H NMR pre-processing data were completed, data were subjected to multivariate sta-

tistical analysis. Initially, PCA was performed without considering the class information for

samples examination and search for outliers. Then, PLS-DA with leave-one-out cross-valida-

tion was also performed on the datasets using the pls package of R software [21]. PLS-DA

allowed individual samples to be classified according to the respective class prior to analysis
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(TN or HS). Model strength was assessed using both R2 and Q2 statistical parameters. While

R2 values reported the total amount of variance explained by the model, the Q2 reported

model accuracy as a result of cross-validation. Aside from its theoretical maximum value of 1,

for biological models, an empirically inferred acceptable value is� 0.4 [13]. The resulting Q2

statistic was compared to a null distribution to test model significance (P< 0.05).

Interpretation of multivariate analysis was performed through scores and loadings plots

according to their contribution to the separation between groups. For biomarker searches,

PLS-DA loadings greater than |0.0005| were selected according to their absolute magnitude

values. Consequently, metabolites responsible for the separation between experimental groups

were those with the highest values. Moreover, a Volcano plot with paired Student t test analysis

between HS over TN cohorts was performed to get a general overview of the data (log2 fold

change thresholds,�1.5 and�1.5; P<0.01) and to identify metabolites with a significant

effect. The false discovery rate (FDR) for differentially excreted metabolites was controlled

according to the Benjamini-Hochberg procedure [22] with an adjusted P<0.05. Volcano plots

are suitable as complementary analysis because both PCA and PLS-DA analysis may be influ-

enced by variable correlations and the intra- and inter-class variance of metabolites may have

no significant differences in the univariate analysis [23]. All 1H NMR data pre-processing, sta-

tistical analysis and the generated plots were performed using R.

Metabolite assignment. Chemical shifts linked to the highest loading values found in

PLS-DA were annotated for metabolite assignment as HS biomarker candidates. The candi-

date chemical shifts and corresponding metabolites were assigned using the Human Metabo-

lome Database [24] and queried in KEGG (Kyoto Encyclopedia of Genes and Genomes)

database to know in which metabolic pathways they were involved.

Results and discussion

Effects of heat stress on thermophysiological and lactational performances

of the goats

The effects of the experimental HS conditions on thermophysiological and lactational perfor-

mances of the dairy goats are summarized in Table 1. Rectal temperature and respiratory rate

increased during the day in both groups of does, following the expected circadian rhythm and

the daily THI pattern in both TN and HS conditions. The greatest values were observed in the

HS does at 1700 hours, the increases being 1.2˚C and 3.5-fold (P<0.001), when compared to

TN does. On average, feed intake decreased 35% in HS (P<0.001), when compared to TN does

but, in contrast, water consumption increased 74% (P<0.001). Furthermore, HS does lost 115

g/d of body weight, whereas TN goats gained 162 g/d, on average (P<0.001). Results obtained

agreed with those reported for the same breed of dairy goats in late-lactation and under similar

HS conditions [16].

Reducing feed intake is a way to decrease heat production in warm environments because

heat increment of feeding, especially in ruminants, is an important source of heat production

[25]. Moreover, increased water consumption under HS conditions is mainly used for boost-

ing latent heat losses by evaporation (e.g., sweating and panting). Despite this, no differences

in milk yield were observed, although milk composition markedly worsened. Milk fat, protein

and lactose contents varied by −9%, −16% and −5%, respectively (Table 1; P<0.01), which

would severely compromise the milk transformation into dairy products [4]. Consequently

with the decrease in the content of milk components, fat-corrected milk yield also varied by

−14% (P<0.05).

Although our does were less sensitive to HS than were dairy cows, with regard to feed intake

and milk yield, the effects of HS on milk fat content and fat-corrected milk were contradictory
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when compared to cows. So, despite the typical fat depression seen in commercial dairy-cow

farms during the summer, Rhoads et al. [5] and Shwartz et al. [26] reported a 9% increase or

no change in milk fat content, in the short- or mid-term, respectively, in HS vs. TN dairy

cows. On the other hand, the above-indicated negative effect of HS on the milk protein content

of our goats (i.e., −16%) was greater than that reported by Rhoads et al. ([5], −5%) and Shwartz

et al. ([26], −9%) in dairy cows, and also in the same breed of dairy goats in late lactation ([16],

−13%). The negative effects of HS on the lactational performances of dairy ruminants are usu-

ally attributed to the decline in feed intake, but pair-fed experiments under TN conditions

have shown that feed intake only explains approximately half of the fall in milk yield and body

weight in dairy cows [5, 6]. Consequently, the other half should be explained by unknown

mechanisms induced by HS. Therefore, similar responses were expected in our dairy goats.

As an intermediate conclusion, the thermophysiological and lactational performance

responses observed clearly demonstrated that our HS does (kept at THI = 75 to 83) were under

severe stress on the days at which the urine samples for 1H NMR-metabolomics assessment

were collected (day 15).

NMR urinary spectroscopy of the goats

A comparison of 1H NMR urinary mean spectra for the TN and HS lactating does is shown

in Fig 1. Resonance assignments reported in the figure were made from the known chemical

shifts and coupling patterns of urine spectra previously described in humans [18, 27].

At first glance, visible differences in urine metabolites were found between HS and TN

groups. The spectral region from δ = 8.0–6.5 ppm showed higher excretion compounds in

the HS doe group. On the contrary, all excreted compounds that lay on the δ = 4.5–0.5 ppm

Table 1. Thermophysiological and lactational performances of dairy goats under thermal neutral (TN) and heat

stress (HS) conditions. Values are least square means and standard error of the means (SEM).

Item Treatment SEM P value

TN HS

Rectal temperature, ˚C

0800 hours 38.5 39.1 0.08 <0.001

1200 hours 38.7 39.7 0.07 <0.001

1700 hours 38.7 39.9 0.09 <0.001

Respiratory rate, breaths/min

0800 hours 27 69 4 <0.001

1200 hours 39 131 6 <0.001

1700 hours 37 130 6 <0.001

Performances

Dry matter intake, kg/d 2.26 1.47 0.09 <0.001

Water intake, L/d 6.1 10.6 1.0 <0.001

Final body weight, kg 48.6 39.8 1.8 <0.001

Body weight variation, kg 3.5 −2.1 1.0 <0.001

Milk yield, L/d 1.88 1.79 0.11 0.413

FCM1 yield, L/d 2.17 1.86 0.13 0.017

Milk composition, %

Fat 3.98 3.64 0.13 0.009

Protein 3.40 2.85 0.10 <0.001

Lactose 4.51 4.30 0.07 0.003

1Fat-corrected milk at 3.5%; FCM = L × [0.432 + 0.162 × (fat, %)] being L liters of milk.

https://doi.org/10.1371/journal.pone.0202457.t001
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spectral region appeared to be at lower concentrations in the HS group. More detailed analyses

of metabolic differences between these two thermal conditions were obtained from the multi-

variate PCA and PLS-DA data analyses and the Volcano plot.

First, the Volcano plot (Fig 2) showed that TN does excreted a greater number of urinary

metabolites (i.e., a higher number of left-sided spots) than did HS does. Most probably, this

was a consequence of the metabolic sparing of nutrients of the HS does, which lost weight as a

result of their negative energy balance, to cope with the HS conditions.

Regarding the multivariate analysis, PCA was initially applied to the 1H NMR spectra.

Based on the principle of minimum differentiation, no samples were identified as outliers

according to Hotelling’s T2 (95% interval of confidence). Therefore, all samples remained for

subsequent PLS-DA in order to identify the metabolic differences between HS and TN dairy

does. The PLS-DA scores plot showed a slight distinguishable separation between HS and TN

datasets (Fig 3).

The separation along the x-axis (PLS-DA component 1) represents differences related to

environmental treatment. All other variations in the NMR data are visualized as separation in

the y-axis direction (second component). The cross-validation of urine metabolomics PLS-DA

models (first 2 components) gave Rx
2 = 0.54, Ry

2 = 0.17, and Q2 = 0.47. The R2 and Q2 values

in the model were higher than those in the random model (P<0.01). Although the top-ranking

metabolites responsible for discriminating HS does were related to gut-derived uremic toxins

or mammalian-microbial cometabolites (i.e. hippurate, OH-phenylacetate, OH-phenylacetyl-

glycine, phenylglyoxylate and trimethylamine N-oxide), the thresholds applied for Volcano

Fig 1. One-dimensional 1H NMR spectra at 600 MHz of urine from representative thermoneutral (TN) and heat-stressed (HS) dairy does.

Dominant metabolites were: 1, creatinine; 2, creatine; 3, trimethyl-N-oxide; 4, urea; 5, branched-chain amino acids and organic acids; 6, glycine;

7, allantoin; 8, alanine; 9, N-acetyl glycoprotein; 10, glutamate; 11, succinic acid; 12, citric acid; 13, aromatic signals; 14, hippuric acid.

https://doi.org/10.1371/journal.pone.0202457.g001
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Plot, allowed to identify a total of 15 metabolites as candidates for urine biomarkers in HS

does (Table 2). Thus, by-products of autophagy (i.e. 3-methyladenine) and energy reservoirs

for muscle contraction (i.e. phosphocreatine) were also overexcreted under HS conditions. On

the other hand, 8 metabolites where detected as underexcreted, some of them related to vita-

min metabolism (i.e. cholecalciferol, pyridoxal, β-alanine) and carbohydrate metabolism (i.e.

glycogen, galactitol) among others.

The increase of gut-derived uremic toxins reflected alterations in the gastrointestinal envi-

ronment due to the metabolic impact of HS. In fact, it is well known that under HS conditions,

mammals redistribute blood to the periphery for heat dissipation purposes, while vasoconstric-

tion occurs in the gastrointestinal tract [28] that leads to tissue hypoxia and oxidative stress

[29]. Moreover, lower rumen pH has been reported as a side-effect in HS goats [30] that leads

to an abnormal overgrowth of gastrointestinal microbiota, a compromised integrity [2] and

hyper-permeability of the gastrointestinal tract barrier [31–33]. Therefore, this toxins found

in plasma and excreted in urine, cross the cellular and tissue barriers (gastrointestinal epithe-

lium, lymphatic barrier and liver) are absorbed into the blood and mainly cleared by the kid-

ney [33, 34].

Hippurate and other Phe-derivative compounds are produced by the aerobic and anaerobic

degradations of aromatic amino acids (e.g., Phe and Tyr) and dietary polyphenols by the

Fig 2. Volcano plot based on fold change (log2) and P value (−log10) of all spectral bins of 1H NMR urinary spectroscopy of heat-stressed

(HS) vs. thermoneutral (TN) lactating dairy does. Red circles indicate the spectral bins that showed significant changes and absolute fold

changes greater than 1.5.

https://doi.org/10.1371/journal.pone.0202457.g002
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gastrointestinal microbiota [34–36]. Moreover, high levels of gut-derived uremic toxins seem

to affect both the cellular protein expression and the activity of the cyclooxygenase-2 (COX-2)

enzyme, which plays a major role in the regulation of inflammation through the production of

prostaglandins; so, when COX-2 activity is sped up, inflammation increases [37]. Some Phe-

derivatives also produce cytotoxic effects by the inhibition of cell pores opening and the pro-

duction of reactive oxygen species [38].

Fig 3. PLS-DA scores plot of the first two principal components of 1H NMR urinary spectra of thermoneutral (TN) and heat-stressed

(HS) lactating dairy does.

https://doi.org/10.1371/journal.pone.0202457.g003

Table 2. Selected metabolites contributing to the classification of the urine metabolome of thermoneutral and heat-stressed lactating dairy does.

Metabolic pathway Chemical shift (δ, ppm) Metabolite Fold change� P value

Phenylalanine (Phe) 7.83, 7.63, 7.54 Hippurate 2.74 <0.001

Tyrosine (Tyr) 7.20 OH-Phenylacetylglycine 2.16 <0.001

Microbial metabolism 3.27 Trimethylamine N-oxide 2.11 <0.001

Nucleotide 3.97 3-Methyladenine 1.82 <0.001

Arginine (Arg) and Proline (Pro) 3.93 Phosphocreatine 1.69 <0.001

Microbial metabolism 7.62 Phenylglyoxylate 1.59 <0.001

Microbial metabolism 7.27 OH-Phenylacetate 1.51 <0.001

Microbial and purine metabolism 5.30 Allantoic acid −1.52 <0.001

Vitamin D 0.56, 0.53 Cholecalciferol −1.57 <0.001

Glucagon signaling 5.40 Glycogen −1.66 <0.001

Galactose 3.69 Galactitol −1.81 <0.001

Neurodegeneration 2.86 6OH-Dopamine −1.87 <0.001

Vitamin B6 5.29, 5.28, 5.27 Pyridoxal −2.03 <0.001

Pantotenate and CoA biosynthesis and pyrimidine metabolism 3.17 β-Alanine (Ala) −2.09 <0.001

Histamine 3.28 Histamine −2.64 <0.001

� Metabolites with positive fold change values mean that they are excreted in greater concentrations under heat-stressed conditions. Those metabolites with negative

fold change values are excreted in higher concentrations under thermoneutral conditions.

https://doi.org/10.1371/journal.pone.0202457.t002
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Among Phe-derivatives, hippurate has a strong association with diet and gastrointestinal

microbiota, and its production requires of both microbial and mammalian metabolisms [39].

Gastrointestinal bacteria produce benzoic acid from dietary aromatic compounds, which is

absorbed into the blood. Because of the toxicity of benzoic acid, it is conjugated with glycine in

the mitochondrial matrix of the liver and renal cortex to form hippuric acid [31, 39], which is

later filtered in the kidneys and finally excreted in urine as hippurate [39, 40]. The main elimi-

nation route for hippurate is the active renal tubular secretion and its disruption results in its

accumulation in the blood [39]. Hippurate is a uremic toxin that participates in the correction

of metabolic acidosis by stimulating ammoniagenesis, a dominant and adaptive mechanism of

proton excretion. Moreover, it interferes with several metabolic processes, such as: inhibition

of glucose utilization by the kidney and muscle, modulation of fatty acid metabolism and regu-

lation of the acid-base balance by stimulating the kidneys’ ammoniagenesis, among others, as

reviewed by Dzúrik et al. [40].

Among these gut-derived metabolic compounds, changing levels of trimethylamine N-

oxide in plasma and milk were also observed in HS dairy cows [7, 8]. Contradictory, these

authors pointed out a lower level of this metabolite found in milk and plasma, while we

observed an overexcretion of this compound through the urine.

It might also be noted that, in addition to the production of gut-derived uremic toxins from

dietary aromatic amino acids by the gastrointestinal microbiota, Phe is known to be an essen-

tial amino acid for most animals, including ruminants [41]. It is also the precursor of Tyr,

which is essential for the synthesis of thyroid hormones and the levodopa neurotransmitter.

Previous studies have shown a strong decrease in plasma thyroid hormones (i.e., TSH, T4 and

T3) in different ruminant models [42–44], which means that the basal heat production may,

in fact, decrease when Phe and Tyr are scarce. Moreover, the rate of milk production is

markedly affected by thyroid hormones, which modulate the nutrient partitioning towards

milk production [45]. On the other hand, a decrease in the dopaminergic neurons activity was

also observed in HS calves [46]. The drop of levodopa synthesis may be the result of the hyper-

secretion of its antagonist prolactin, as observed in response to HS in goats [47], ewes [48] and

cows [49]. Prolactin is not only a hormone related to milk production, but also has a broad

variety of biological functions related to thermoregulation and water balance. The increase in

plasma prolactin is not reflected in an increase in milk yield, as seen in dairy ruminants under

HS conditions [16, 50]. Alamer [51] concluded that the mammary gland experiences a down-

regulation of prolactin-signaling pathways that could partially explain the depressed milk pro-

duction of dairy cows during HS.

Increased concentration of 3-methyladenine in urine is associated with increased autop-

hagy [52]. Autophagy controls the proteostasis in organisms (reviewed by Dokladny et al.

[53]) and HS is an extracellular stressor that alters the folding capacity of a cell leading to the

accumulation of misfolded or unfolded proteins [54]. Under stress conditions, eukaryotic

cells increase the employ of autophagy to remove misfolded proteins, large protein aggre-

gates, and whole damaged organelles inaccessible to smaller proteolytic systems [55]. More-

over, under negative energy balance, as commonly observed in HS animals, autophagy is

an adaptive mechanism that provides biofuel from degraded macromolecules to maintain

sufficient ATP production for adaptive macromolecular synthesis to survive stressful condi-

tions [56]. One of the end products of protein catabolism is urea. An increased concentration

of urea in blood, milk and urine is commonly observed in HS dairy cows [6, 9, 26, 50] as a

result of the strongly up-regulated pathway of nucleotides metabolism during HS [57]. Urea

excretion peaks were compared between HS and TN does, but no differences were found in

our study (P = 0.48) in agreement with that previously reported by Hamzaoui et al. in the

uremia of HS dairy does [16]. Thus, because cows do not have very many active sweat glands,
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we speculate that a greater portion of urea may be lost in the sweat of goats when compared

to cows.

On the other hand, the lower urinary excretion of metabolites related to vitamin metabo-

lism (i.e. cholecalciferol, pyridoxal, β-alanine) may be a reflection of the commonly reported

increased vitamin requirements of animals under thermal load [58].

Conclusions

Heat stress caused marked changes in thermophysiological traits and lactational performances

of dairy goats, which were translated into their 1H NMR metabolomic urinary profile. These

changes were mainly related to the over-excretion of gut-derived toxic compounds generated

by the gastrointestinal microbiota with expected decreases in the bioavailability of aromatic

amino acids and impairment of the synthesis of thyroid hormones and neurotransmitters (i.e.,

levodopa, serotonin), which compromised the milk production of dairy goats. In practice, the

use of hippurate and other phenylalanine derivatives are suggested as urinary biomarkers to

identify heat-stressed animals.
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